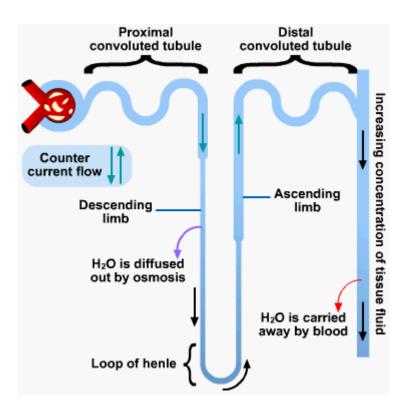
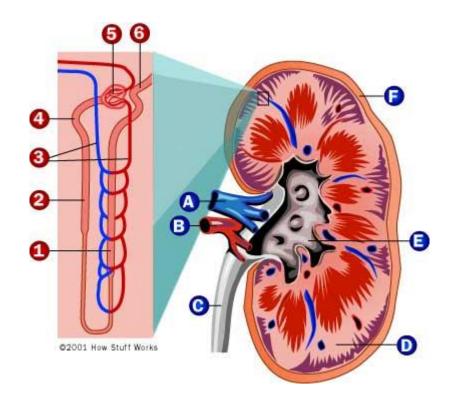

DIURETICS-2

Dr. Shariq Syed

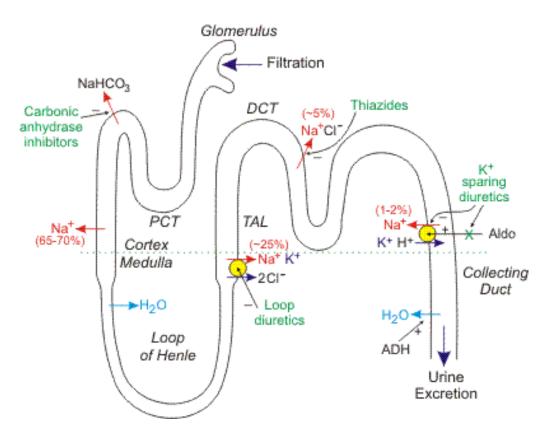
Shariq AIKC/TYB/2014


Structure of Kidney

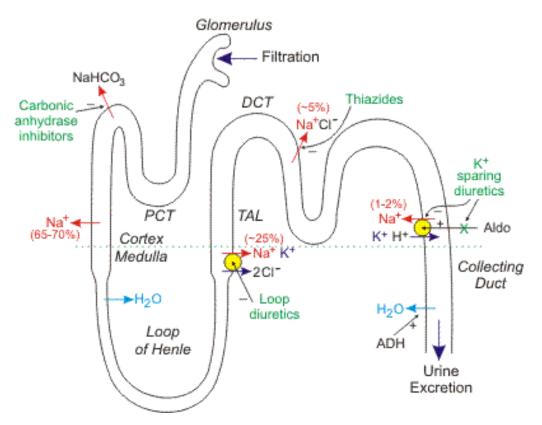

Excretion = Filtration - Reabsorption + Secretion

- Blood filtered by functional unit: Nephron
- Except for cells, proteins, other large molecules, rest gets filtered

Structure of Kidney



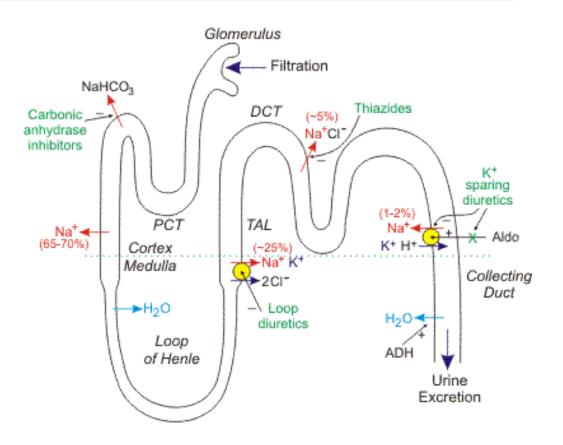
- 3 major regions of nephron
 - PCT (Proximal Convoluted Tubule)
 - Loop of Henle
 - DCT (Distal convoluted Tubule)


Role of Kidneys in Water/ Na reabsorption

- 20 % of plasma filtered in to PCT
- 65-70 % of filtered Na removed isoosmotically
- Medulla hyperosmotic , loop is permeable to water, water reabsorption takes
- The TAL, which is impermeable to water, has a cotransport system that reabsorbs sodium, potassium and chloride
- Approximately 25% of the sodium load of the original filtrate is reabsorbed at the TAL

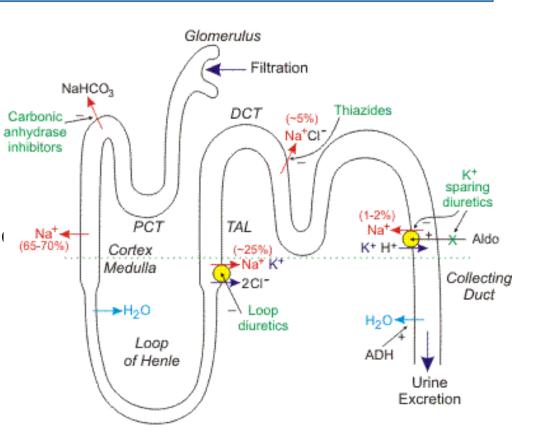
Role of Kidneys in Water/ Na reabsorption

- 5 % Na reabsorbed in DCT
- 1-2 % Na reabsorbed in remaining region



Mechanism of Action

- Diuretics act by changing the way kidney handles Sodium
- Most Diuretics acts by blocking reabsorption of Sodium
- Sometimes a combination of two diuretics is given because this can be significantly more effective than either compound alone (synergistic effect) of Na


Different Classes of Diuretics

- Loop Diuretics:
 - inhibit the sodium-potassium-chloride cotransporter in the thick ascending limb
 - This transporter normally reabsorbs about 25% of the sodium
- Thiazide Diuretics:
 - Commonly used, act in DCT (5% Na)
 - Less powerful

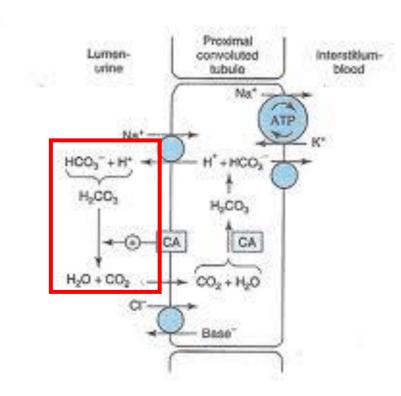
Different Classes of Diuretics

- K Sparing Diuretics:
 - Some do not act directly on Na transport
 - Antagonize the actions of aldosterone
- Carbonic anhydrase inhibitors:
 - Inhibit the transport of bicarbonate out the proximal convoluted tubule
 - leads to less sodium reabsorption at this site and therefore greater sodium, bicarbonate and water loss in the urine
 - Weakest in class



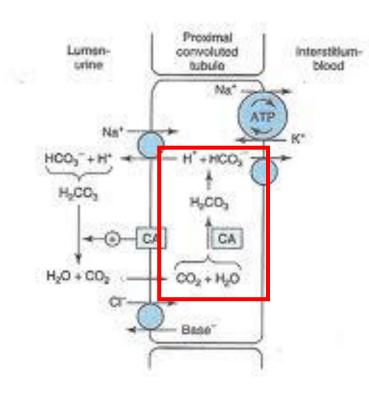
Carbonic Anhydrase inhibitors

- Carbonic anhydrase inhibitors:
 - Inhibit the transport of bicarbonate out of the proximal convoluted tubule
 - leads to less sodium reabsorption at this site and therefore greater sodium, bicarbonate and water loss in the urine
 - Weakest in class


Proximal Convoluted Tubule

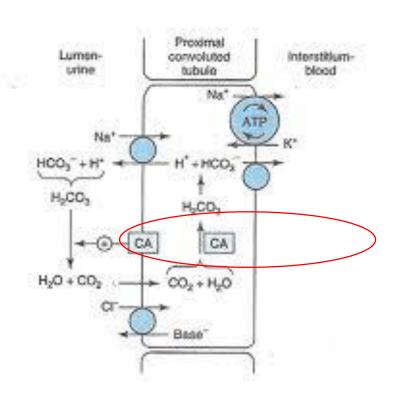
• <u>Step 1</u>

- Na⁺/H⁺ exchanger (NHE3) allows
 Na⁺ to enter for exchange of H⁺
- Na/K/ATPase pumps Na back in to interstitial space to maintain low intracellular Na⁺ conc

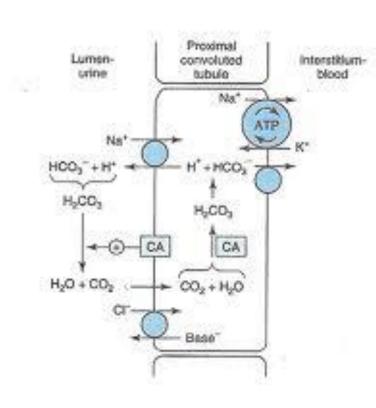

Proximal Convoluted Tubule

• <u>Step 2</u>

- H⁺ secreted in lumen combines with bicarbonate (HCO⁻₃) to form carbonic acid
- Carbonic acid rapidly dehydrated to form H₂0 and CO₂ catalyzed by carbonic anhydrase (CA)


Proximal Convoluted Tubule

• <u>Step 3</u>


- CO₂ diffuses inside the cell, rehydrated back by CA
- Carbonic acid dissociates to form HCO3⁻ and H⁺
- HCO3⁻ is transported out by basolateral transporter
- H⁺ is available for exchange with Na⁺

Carbonic Anhydrase (CA) Inhibitors

- Carbonic anhydrase catalyses the following reversible reaction
- CO₂ + H₂O <---^{CA}--> H₂CO₃
- CA inhibitors inhibit this reaction
- This leads to a decreased ability to exchange Na⁺ for H⁺ in the presence of CA inhibitors resulting in a mild diuresis

Carbonic Anhydrase (CA) Inhibitors

- In presence of CA inhibitors, carbonic acid levels build up
- Also, decrease in the body's ability to reabsorb serum bicarbonate, resulting in urinary bicarbonate wasting
- At max doses, almost 85 % capacity to reabsorb is HCO₃ ⁻ at PCT is inhibited
- Activity decreases over a period of time as body increases NaCl reabsorption in later tubule segments

Carbonic Anhydrase (CA) Inhibitor Drugs

- This class was the forerunner of modern diuretics
- Discovered in 1937, sulfonamides caused diuresis
- Drugs in use
 - Actezolamide (prototype of this class)
 - Dichlorphenamide
 - Methazolamide
- This class now rarely used as diuretics but do have other applications

Carbonic Anhydrase (CA) Inhibitor Drugs

Clinical Indications and doses

- Major clinical applications involving CA inhibitors
- Glaucoma:
 - Reduction in aqueous humor by CAI decreases intra-ocular pressure
 - Valuable in management of glaucoma
 - Typical doses: 50 150 mg/ 1-3 times daily
- Urinary alkalization:
 - Increase urine pH to prevent stones formation due to cystinuria or uric acid
- Acute mountain sickness:
 - Lowers the production of cerebrospinal fluid (CSF) leading to increase ventilation
- Adjuvant uses:
 - Epilepsy, CSF leakage

Toxicity

- Metabolic acidosis:
 - Condition where the blood becomes slightly acidic
 - Results due to imbalance in acid-base balance
- Renal stones:
 - Phosphaturia, calciuria in response to CAI
 - Ca stones relatively insoluble in alkaline urine
- Renal K wasting:
 - Increased Na+ reabsorption, increase negative potential in lumen
 - K secreted to counter