1

Recap of what we did last time

- Reviewed the structure/function of Nephron
- Basic concept of how diuretics work
- Introduced different classes of Diuretics
- Looked in detail at Carbonic Anhydrase inhibitors

Action at TAL, close look at NKCC2

- NKCC2 electrically neutral transporter (2⁺, 2⁻)
- Leads to excess accumulation of K⁺ in cells, gets diffused back in lumen
- Positive potential in lumen drive Ca²⁺, Mg²⁺ reabsorbed via paracellular path

Loop Diuretics, MOA, Site

- Loop diuretics blocks the NKCC2 transporter leading to
 - Decreased reabsorption of Na+ along with Ca2+, Mg^{2+}
 - By disrupting the reabsorption of these ions, loop diuretics prevent the generation of a hypertonic renal medulla
 - Without such a concentrated medulla, water has less of an osmotic driving force to leave the collecting duct system, ultimately resulting in increased urine production

AIKTC - Knowledge Resources & Relay Center

Pharmacokinetics of Diuretics

- Loop diuretics are rapidly absorbed (1-3 hours)
- Eliminated by glomerular filtration and secretion
- Duration of effect is 2-3 hours
- Half life depends on renal function

Clinical Indications

- Hyperkalemia:
 - Loop diuretics significantly enhance urinary excretion of K⁺
- Acute renal failure
 - Increase in urinary flow to flush out intra-tubular casts, obstructions

• Anion overdose

- Br, Fl, I
- Saline must be co-administered to replenish Na, CI loss

Toxicity Hypokalemia Metabolic Alkalosis Increased excretion of K⁺ due to increased excretion of Na⁺ • Hypomagnesaemia • Increased excretion of Mg⁺ • Allergic and other reactions

Thiazide Diuretics

- 5-10 % Na reabsorbed at DCT
- Impermeable to water, leads to dilution
- Thiazide diuretics originally synthesized to create more potent carbonic anhydrase inhibitors
- Act at DCT

Thiazide action at DCT

- Na⁺, Cl⁻ reabsorbed by Na⁺/Cl⁻ cotransporter (NCC)
- Ca⁺⁺ actively reabsorbed by Ca ⁺⁺ channel & basolateral Na⁺/Ca ⁺⁺ exchanger
- Thiazides bind to Cl⁻ inhibiting NCC & thus prevent Na⁺ reabsorption

Toxicity

- Hypokalemic metabolic acidosis
- Hyperlipidemia
 - Increase in cholesterol and LDL
 - Levels typically return to baseline after prolonged use
- Hyponatremia
 - Important side effect
 - Prevented by reducing the dose or fluid intake

Activity at Collection tubule

- 3 components: connecting tubule, collecting tubule, collecting duct
- 2.5 % Na reabsorption, final site of Na⁺ reabsorption
- Mineralocorticoids have the largest influence at this site
- Most important site of K⁺ secretion in kidney

Activity at Collection tubule

- Mechanism of ion reabsorption different from other regions
- Separate channels for Na + & K +
- Na⁺ entry preferred, movement creates a negative lumen potential
- Cl get's in via paracellular route, K + goes out of cell
- <u>Aldosterone increases activity of these channels</u>
- Diuretics and Aldosterone activity leads to K ⁺ wasting

K-Sparing diuretics

- K-Sparing diuretics mainly act by 2 ways
 - 1. <u>Competitive antagonist of Aldosterone</u>
 - 2. Directly block Na channels

Competitive Aldosterone antagonist

- These directly compete with aldosterone for intracellular cytoplasmic binding sites
- Thus prevent <u>formation of proteins</u> that are normally synthesized in reaction to aldosterone
- As a result mediator proteins are not produced, and so stimulation of sodium-potassium exchange <u>does not occur</u>

Competitive Aldosterone antagonist

- Synthetic steroidal molecules
- Spironolactone has a slower onset, takes days for full therapeutic effect
- Eplerenone is much selective for ADH receptor, lower side effects

Direct channel blockers

- Directly interfere with Na entry through epithelial Na⁺ channels (eNaC)
- Since K⁺ secretion is coupled with Na⁺ entry in this region
- Both categories are thus K + –sparing diuretics

AIKTC - Knowledge Resources & Relay Center

Clinical Indications

- Most useful in conditions of Aldosterone excess (hyperaldosteronism)
- This excess can be due to
 - Primary hypersecretion (Conn's syndrome .)
 - Secondary hypersecretion (evoked by heart failure, liver cirrhosis etc conditions with lower blood volume)
 - Use of loop, thiazide diuretics exacerbate volume contraction
 - Due to enhanced Aldosterone, higher Na⁺ presentation, K⁺ wasting occurs, K⁺ sparing agents prevent wasting
- These drugs have <u>mild action</u>, should be avoided in conditions where potent diuretic action is desired

Toxicity

- Hyperkalemia
 - Can cause mild, moderate or even life threatening hyperkalemia
 - Risk increased in case of renal disease or renin inhibitors
 - Toxicity more common when used alone
- Hyperchloremic Metabolic Acidosis
 - Inhibit H⁺ secretion along with K⁺ causing acidosis
- Kidney stones
 - Triamterene is slightly soluble in urine, may ppt causing kidney stones

Agents that alter water excretion Osmotic Diuretics

- <u>Proximal tubule, descending limb</u> are water permeable
- Any osmotic active agent filtered but not absorbed causes water retention
- Prototype agent : Mannitol

Pharmacodynamics & Pharmacokinetics

- <u>PD:</u>
 - Major effect on Proximal tubule & descending limb
 - Presence of non-absorbable solute counters other osmotic forces
 - Increase in urine flow decreases the contact time for Na⁺, water reabsorption

• <u>PK:</u>

- Mannitol poorly absorbed in GI, given IV
- Not metabolized, excreted by <u>filtration</u> within 30- 60 min (No reabsorption or secretion)

Clinical Indications

- Increase in Urine Volume
 - Used to increase water excretion in preference to Na⁺ excretion
 - To maintain urine volume & prevent anuria (No urine formation)
- Reduction of intra-cranial, intra-ocular pressure
 - Osmotic diuretics alter osmotic forces; water leaves cell reducing intra-cellular volume
 - This effect used to lower intra-cranial pressure in neurological conditions
 - & lower intra-ocular pressure before ophthalmic procedures

Toxicity

- Extracellular Volume expansion:
 - Mannitol rapidly distributed in extracellular compartment, extracts water from cells
 - Leads to expansion of extracellular volume, hyponatremia
 - This can complicate heart failure, lead to edema
- Dehydration, Hyperkalemia, Hypernatremia:
 - Excessive use leads to water losses leading to dehydration, hypernatremia
 - Water extraction from cells leads to hyperkalemia (increase in K⁺ conc)

Water extraction at Collection tubule

- Regulated system of water channels for water reabsorption
- <u>ADH or arginine vasopressin</u> controls the movement of water by inserting preformed water channels (Aquaporins)
- In absence of ADH, collecting tubule is impermeable to water
- ADH increases water permeability leads to formation of conc urine

ADH Antagonist

- ADH antagonist block effects of ADH leading to diuresis
- Non-selective agents:
 - Lithium, demeclocycline
- Selective agents:
 - Vasopressin receptor (V2) antagonist
 - Conivaptan, tolvaptan, lixivaptan, satavaptan
 - Conivaptan is administered IV
 - Tolvaptan is administered orally, half life of 12-24 hrs

Clinical Indications

- Syndrome of Inappropriate ADH secretion (SIADH)
 - Water restriction is preferred choice in SIADH
 - If doesn't work then use ADH antagonist
- Other causes of elevated ADH:
 - Low blood volume due to various reasons leads to elevated ADH levels
 - ADH antagonist useful in this setting