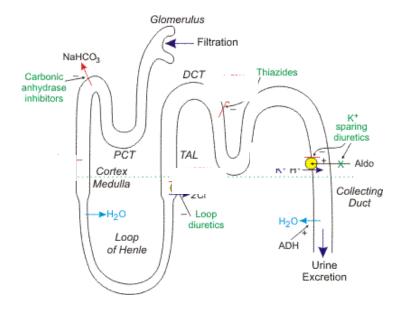
DIURETICS-3

Dr. Shariq Syed


• Diuretics primarily prevent the reabsorption of

K

Na

I Don't know, Too busy with periodic exams!

• In which nephron region max reabsorption of Na⁺ takes place ??

• Carbonic anhydrase inhibitors act in which region of nephron

Loop

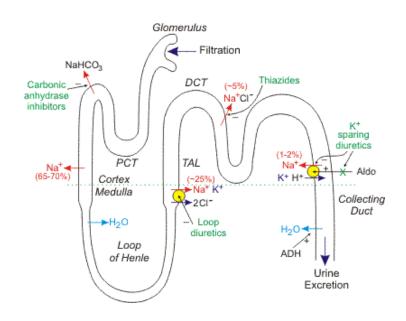
DCT

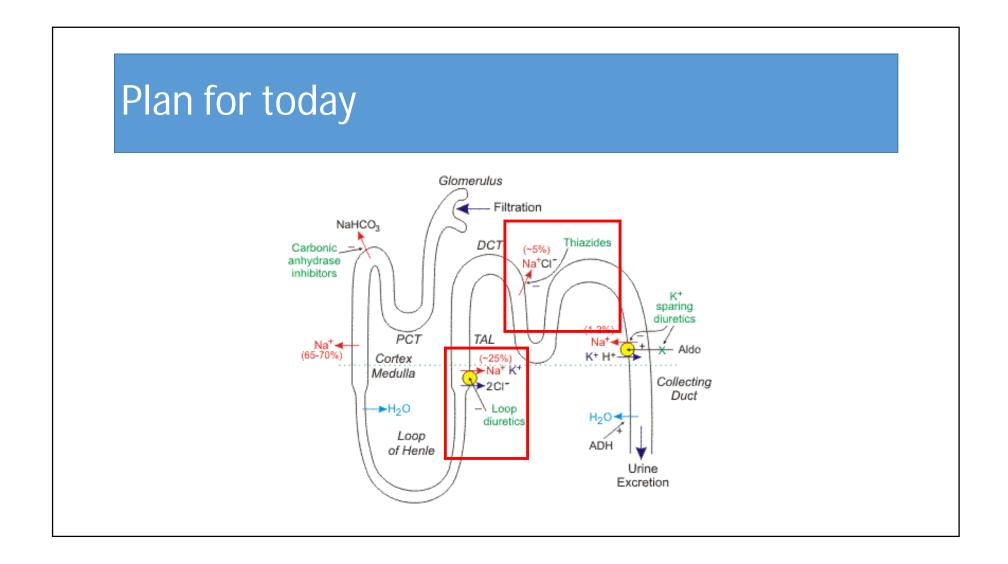
PCT

Sorry, forgot, any lifeline ??

• Major use of Carbonic anhydrase inhibitors is in treatment of

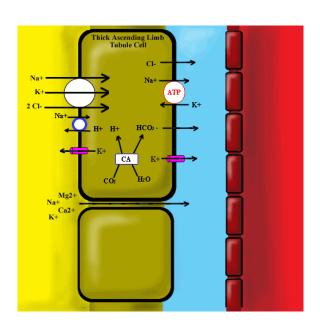
Glaucoma

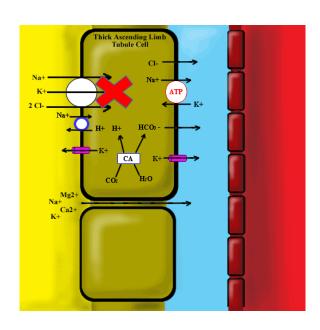

Malaria


Dengue

Sorry, forgot, any lifeline??

Recap of what we did last time

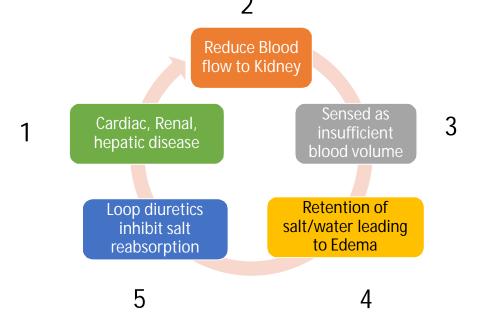

- Reviewed the structure/function of Nephron
- Basic concept of how diuretics work
- Introduced different classes of Diuretics
- Looked in detail at Carbonic Anhydrase inhibitors


Action at TAL, close look at NKCC2

- NKCC2 electrically neutral transporter (2⁺, 2⁻)
- Leads to excess accumulation of K⁺ in cells, gets diffused back in lumen
- Positive potential in lumen drive Ca²⁺, Mg²⁺ reabsorbed via paracellular path

Loop Diuretics, MOA, Site

- Loop diuretics blocks the NKCC2 transporter leading to
 - Decreased reabsorption of Na⁺ along with Ca²⁺, Mg²⁺
 - By disrupting the reabsorption of these ions, loop diuretics prevent the generation of a hypertonic renal medulla
 - Without such a concentrated medulla, water has less of an osmotic driving force to leave the collecting duct system, ultimately resulting in increased urine production


Loop Diuretics, Structures

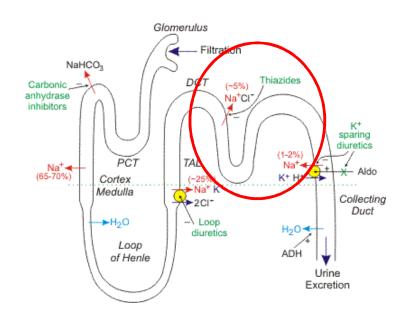
Pharmacokinetics of Diuretics

- Loop diuretics are rapidly absorbed (1-3 hours)
- Eliminated by glomerular filtration and secretion
- Duration of effect is 2- 3 hours
- Half life depends on renal function

Clinical Indications

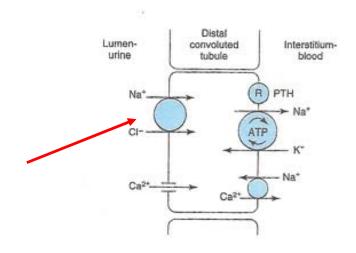
• Most important use of loop diuretics in treating EDEMATOUS conditions (peripheral or pulmonary edema)

Clinical Indications

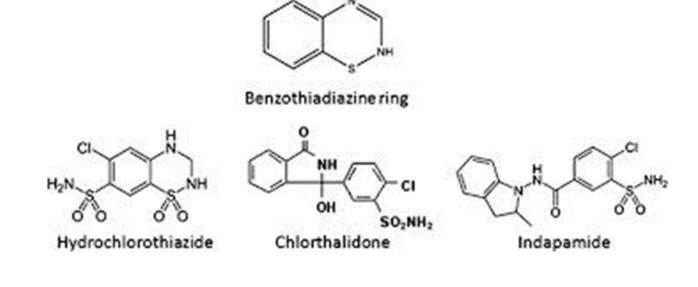

- Hyperkalemia:
 - Loop diuretics significantly enhance urinary excretion of K+
- Acute renal failure
 - Increase in urinary flow to flush out intra-tubular casts, obstructions
- Anion overdose
 - Br, Fl, I
 - Saline must be co-administered to replenish Na, Cl loss

Toxicity

- Hypokalemia Metabolic Alkalosis
 - Increased excretion of K+ due to increased excretion of Na+
- Hypomagnesaemia
 - Increased excretion of Mg⁺
- Allergic and other reactions


Thiazide Diuretics

- 5- 10 % Na reabsorbed at DCT
- Impermeable to water, leads to dilution
- Thiazide diuretics originally synthesized to create more potent carbonic anhydrase inhibitors
- Act at DCT



Thiazide action at DCT

- Na+, Cl- reabsorbed by Na+/Cl- cotransporter (NCC)
- Ca⁺⁺ actively reabsorbed by Ca ⁺⁺ channel & basolateral Na⁺/Ca ⁺⁺ exchanger
- Thiazides bind to Cl⁻ inhibiting NCC
 & thus prevent Na⁺ reabsorption

Thiazide Diuretics, Structures

Clinical Indications

- Less powerful than loop diuretics but preferred in treating Hypertension
 - Decreased blood volume, vasodilation
 - Amongst the group, Hydrochlorothiazide is the most widely used
 - Usually reserved for patients with mild renal insufficiency
- Mild heart failure

Toxicity

- Hypokalemic metabolic acidosis
- Hyperlipidemia
 - Increase in cholesterol and LDL
 - Levels typically return to baseline after prolonged use
- Hyponatremia
 - Important side effect
 - Prevented by reducing the dose or fluid intake