1

Congestive Cardiac Failure-1 Dr. Shariq Syed Shariq AIKC/TYB/2014

What is Congestive Cardiac Failure (CCF)?

- Heart failure does not mean the heart has stopped working
- Heart's pumping power is weaker than normal
- In Heart failure:
 - blood moves through the heart and body at a slower rate
 - pressure in the heart increases
 - heart cannot pump enough oxygen and nutrients to meet the body's needs

What is Congestive Cardiac Failure (CCF)?

- In Heart failure:
 - The chambers of the heart respond by stretching
 - Heart muscle walls weaken and become unable to pump as efficiently
 - kidneys may respond by causing the body to retain fluid
 - Leads to Edema (congestion), hence the name Congestive Cardiac Failure (CCF)

What are symptoms of Congestive Cardiac Failure (CCF)?

- Symptoms in Heart failure:
 - Shortness of breath (dyspnea) when you exert yourself or when you lie down
 - Fatigue and weakness
 - Swelling (edema) in your legs, ankles and feet
 - Rapid or irregular heartbeat
 - Swelling of your abdomen (ascites)
 - Sudden weight gain from fluid retention
 - Difficulty concentrating or decreased alertness
 - Sudden, severe shortness of breath and coughing up pink, foamy mucus
 - Elevated blood pressure
 - Chest pain, if your heart failure is caused by a heart attack

What causes Congestive Cardiac Failure (CCF)?

- Coronary artery disease:
 - Disease of the arteries that supply blood and oxygen to the heart
 - If arteries become blocked or severely narrowed, the heart becomes starved for oxygen and nutrients
- Heart attack:
 - Coronary artery becomes suddenly blocked, stopping the flow of blood to the heart muscle

What causes Congestive Cardiac Failure (CCF)? • Cardiomyopathy:

Shariq AIKC/TYB/2014

• Damage to the heart muscle from causes other than artery or blood flow problems

What causes Congestive Cardiac Failure (CCF)?

- <u>Hypertension</u>:
 - High blood pressure (75% cases)
 - The heart muscles thicken to make up for increased blood pressure
 - The force of the heart muscle contractions become weak over time
 - muscles have difficulty relaxing
 - This prevents the normal filling of the heart with blood

heart

Hypertensive

Thickening in _____ walls of ventricles

*ADAM.

What causes Congestive Cardiac Failure (CCF)?

- Conditions that overwork the heart:
 - valve disease
 - thyroid disease
 - kidney disease
 - diabetes, or
 - heart defects present at birth

How do you Diagnose Heart Failure?

Echocardiography

- Use of Ultrasound to determine
 - <u>Stroke volume</u> (Volume of blood pumped with each beat)
 - End diastolic volume (volume of blood in the right and/or left ventricle at end load)
 - Ejection fraction (Fraction of blood leaving ventricles)
- Chest X-ray
 - Visible enlargement of heart in acute cases

normal sized heart

abnormally large heart (cardiomegaly)

How do you Diagnose Heart Failure?

- Blood test
 - Electrolytes
 - Measures of renal, liver, thyroid function
 - B-type natriuretic peptide (BNP) is a specific test indicative of heart failure

Treatment Strategy

- <u>Cardiac targets</u>: traditional positive ionotropic agents
 - Preferred in acute systolic failures
- <u>Non-cardiac targets</u>: ACE inhib, angiotensin receptor blockers, b-blockers, Diuretics
 - These agents are more useful in reducing long term mortality rates

Cardiac contractility

- Slow Ca⁺ entry acts as a triggers
- Releases large amounts of Ca⁺ from SR

Pharmacodynamic effect of Digoxin

- Na⁺/K⁺ ATPase is membrane bound transport (Na pump)
- At molecular level digoxin inhibits Na⁺/K⁺ ATPase

• Inhibition leads to

- 1. Increase in Na⁺ conc in cell
- 2. Reduction in Ca⁺⁺ exchange by Na⁺/Ca⁺⁺ exchanger
- 3. High conc of Ca⁺⁺ increases contractility of heart

Digoxin Pharmacokinetics

- Following oral administration, peak serum concentrations of digoxin occur at 1 to 3 hours
- After absorption, Digoxin is extensively distributed in tissues
- Very little metabolism, mostly excretion in urine
- Half life is 1-2 days

Clinical uses of Digoxin

- Indicated for patients with heart failure & Atrial fibrillation
- Only administered when Diuretics, ACE inhibitors have failed to control symptoms
- Used in systolic dysfunction
- Needs to be carefully monitored
- When symptoms mild
 - Slow loading dose 0.125 0.25 mg/day is safe
 - Same effect as 0.5 0.75 mg/8 hrs for three dose, followed by 0.125 0.25 mg/day

Digoxin Toxicity

- Mild toxicity:
- visual changes
- GI disturbances generally require lowering of dose
- Serum levels of digitalis, K⁺ have to be carefully monitored
- Monitoring of K + especially dialysis patients
- In severe intoxication, K + levels elevated
- In this case prompt treatment by cardiac pacemaker catheter, digitalis antibodies

ACE inhibitors

- First line of treatment for patients with left ventricular dysfunction & no edema
- In asymptomatic patients, reduces preload & afterload, slows progression of ventricular dilation
- Beneficial in both non-symptomatic , severe heart failure
- Captopril, Ramipril, Enalopril

Angiotensin Receptor blockers

- Blockers of Angiotensin II type I (AT₁) receptor
- More selective blockers of Angiotensin system compared to ACE inhibitors
- Similar hemodynamic effects as ACE inhibitors
- Reserved for patients that do not tolerate ACE inhibitors
- Losartan, olmesartan, Telmisartan, Azilsartan

Beta-blockers

- Beta blockers block the effect of sympathetic nervous system on heart
- Beta blockers prevent binding of catecholamines (adrenaline) on beta receptors (b1) on heart
 - 1. resulting is slow heart rate
 - 2. This leads to increasing the ejection fraction of the heart

Beta-blockers

- Beta blockers cause a decrease in renin secretion,
- which in turn reduces the heart oxygen demand by
 - lowering extracellular volume and
 - increasing the oxygen-carrying capacity of blood
- Non-selective beta-blockers:
 - Carvedilol
 - Nebivolol
- <u>Selective beta-blockers:</u>
 - Bisoprolol, metaprolol

Diuretics

- Diuretics are used in heart failure where there are symptoms of Edema (Fluid build up in body)
- Typically used along with ACE inhibitors
- Class of Diuretics used:
 - Loop Diuretics
 - Thiazide Diuretics
 - K-Sparing Diuretics